- · Sampling is a way to do approximate inference (without incurring the [potentially] exponential cost of VE and IBE)
 - o like repeated simulation of samples from BN getting a sample is faster than computing probabilities
 - draw N samples from a sampling distribution S
 - compute an approximate posterior probability (empirical probability)
 - you should be able to show that this converges to the true probability P(Q | E) that you would get using a technique like VE or IBE (enumeration) as your number of samples -> infinity (by LLN)
 - o can also use sampling to learn a distribution you don't know (more on this in a later note on ML)
- · Sampling from a given distribution
 - Generate a random number in [0, 1) = sample u
 - o Convert sample u into an outcome for the given distribution
 - associate each outcome with an interval in [0, 1)
 - e.g. P(red) = 0.6, P(blue) = 0.3, P(green) = 0.1
 - [0, 0.6) = red, [0.6, 0.9) = blue, [0.9, 1) = green
 - After you sample a couple times you can calculate empirical probabilities
 - o a sample is an outcome/assignment to all variables
- In complex BN we can sample by using the full joint distr., but we don't want to construct the full joint (the whole point of this)
 - 4 sampling methods will be covered: 1) Prior sampling, 2) Rejection sampling, 3) Likelihood weighting, 4) Gibbs sampling (bold is what's used in practice most often)
- Prior sampling (aka ancestral sampling/forward sampling)
 - topologically order your BN
 - o we sample in topological order
 - · first we sample from the root variable's CPT (doesn't depend on anything)
 - we get an outcome, proceed to the next variable X
 - all X's parents are guaranteed to have been resolved to some outcome already
 - · we sample from the part of the CPT consistent with it's parent's outcomes
 - do this until we get an outcome for each variable:
 - together all outcomes for all variables = one sample of our it distr.
 - o Code:
 - for i = 1...n:
 - sample x_i from P(x_i | parents(x_i))
 - return sample = (x_1, ..., x_n)
 - o Proof that this samples according to the joint distr.
 - Let S_PS be the distribution from which we sample
 - S_PS (x_1, ..., x_n) = Product of P(x_i | Parents $(x_i) = P(x_1, ..., x_n)$
 - trivially true by our procedure (probability of each sample is product of getting each ancestor sample along the way)
 - Let $N_PS(x_1, ..., x_n)$ be the number of samples with outcome (x_1, ..., x_n)
 - then lim N->infty empirical P(x_1, ..., x_n) = $\lim_{x \to \infty} N_{-}PS(x_{-}1, ..., x_{-}n) / N = S_{-}PS(x_{-}1, ..., x_{-}n) / N = S_{$ $x_n) = P(x_1, ..., x_n)$
 - With these samples we can calculate any probabilities we want from the BN

Inference via Sampling Always the same recipe P(C|+w)? Sten 1: Generate samples Each sample is an outcome (assignment to all Step 2: Select all samples that are consistent Step 3: Count the number of times each value of the query variable occurs 2/3

- We'll get a bunch of samples from the BN:
- +c, -s, +r, +w +c, +s, +r, +w -c, +s, +r, -w +c, -s, +r, +w
 - -c, -s, -r, +w
- If we want to know P(W)
 - We have counts <+w:4. -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C|+w)? P(C|+r,+w)? P(C|-r,-w)?
 - Fast: can use fewer samples if less time (what's the drawback?)
- but this depends on the specific outcome we want even happening at all in any of our samples
- · for unlikely outcomes Prior Sampling requires a large amount of samples before we can answer (e.g. P(C | -r. -w))
- tradeoff between Speed vs. Accuracy (small samples to get a quick answer, large samples to get a more accurate answer)
- · Rejection sampling improvement on PS
 - o prior sampling doesn't take into account what our actual guery is (i.e. what samples are we actually

interested in?); thus, we can make prior sampling more efficient

- o Main idea
 - as soon as we get a partial sample that matches our query we stop sampling any of the other variable outcomes (don't need them)
 - we also stop & throw out samples as soon as we get outcomes inconsistent with the evidence of our query
- o Proof: same as prior sampling
- · Likelihood weighting improvement on RS
 - o Problems with rejection sampling:
 - · evidence is not exploited
 - we're still generating random samples, and if evidence is really unlikely to occur, we're going to reject most of our samples --> RS becomes very inefficient if evidence is unlikely to occur
 - instead we should force ALL samples to agree with evidence, and sample the rest of the variables (enter Likelihood weighting); but we need to be careful to adjust the probability by the likelihood of the evidence occurring P(evidence | parents(evidence)), i.e. the "weight"
 - so each sample in this case is not worth 1 as with PS and RS; instead its worth its weight
 - e.g. the diagonal lines indicate +evidence variables
 (S = +s, W = + w)
 - we proceed as with PS in topological order
 - get +c, go to S, don't sample, instead weight by P(+s | + c) = 0.1 (since this is an evidence var.)
 - proceed to R, sample according to P(R | +c), get the sample +r
 - proceed to W, don't sample, instead weight by P(+w | +c, +r) = 0.99 (since W = +w is also an evidence var.)
 - o Code:

- Proof that this matches full jt distr.
 - sampling the variables z, with fixed evidence variables e
 - ► Let S_WS(z, e) = Product of P(z_i | parents(z_i))
 - · product of sampling non-evidence variables
 - Let w(z, e) = Product of P(e_i, | parents(e_i))
 - · product of sampling evidence variables
 - Together, the weighted sampling distribution is consistent with the full joint:
 - S_WS(z, e) * w(z, e) = Product of P(z_i | parents(z_i)) * Product of P(e_i, | parents(e_i)) = P(z_1, ..., z_m, e_1, ..., e_n)
- Now all of our samples are going to reflect the evidence
 - however, if our evidence is really unlikely, our weights are going to be small; and a sample with weight 1 is as good as 10 samples with weight 0.1, so we need to generate more samples for smaller weight samples (which will happen if our evidence is really unlikely) = inefficient
 - · evidence variables influence choice of downstream variables, but not upstream ones (+s does not affect

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want P(C| +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

+c, -s, +r, +w +c, +s, +r, +w -c, +s, +r, -w +c, -s, +r, +w

Likelihood Weighting

outcome of C in example above)

- · hence we could have a lot of small weight samples; unlikely outcomes for evidence given likely upstream variables will still be unlikely and we will need to generate A LOT of samples before we can get an accurate distribution for the query
- sum of weight = how many "effective" samples were obtained; high weight = good
- we would like to consider evidence when we sample every variable, enter Gibbs sampling

When is Likelihood Weighting Difficult?

P(C = +c|+r) = 0.0 ?!

- Information about evidence affects downstream nodes
- Information about evidence does **not** affect *upstream* nodes
 - When we sample Cloudy we do not use the evidence at
- · Gibbs sampling when evidence occurs downstream, this is more efficient (converges to true distr. faster) o Procedure:
 - start with a random full assignment to all variables x_1, ..., x_n (fixing evidence to be consistent)
 - · sample 1 variable at a time, conditioned on all other variables (don't sample evidence variables)
 - repeat for many many iterations in order to "forget" initial random assignment that didn't match our distr

- in the limit the resulting sample will come from the correct joint distribution
- · rationale: now both upstream and downstream variables condition on evidence
- [Resampling of one variable] procedure
 - · join on the variable X, renormalize with respect to X (divide by sum of join over X) since we want the distribution P(X | x i's) the total

probability space is over all values

of X

- · notice that all other variables are fixed, thus the size of the join is just |X|!
- the resulting factor depends only on X's parents, its children + children's parents [show up in the CPTs] (the Markov blanket of X)

A General Recipe

Sample from P(S | +c, +r, -w)

- Enough to **only** join on S
- How large is the resulting factor?
- But it gets better...
 - · Only need to multiply those entries that are consistent with the assignment

P(C)	P(R C)	P(S C)	P(W S,R)			
+c 0.5	+c +r 0.8	+c +s 0.1	+s	+r	+w	0.99
-c 0.5	-r 0.2	-s 0.9			-w	0.01
	-c +r 0.2	-c +s 0.5		-r	+w	0.90
	-r 0.8	-s 0.5			-w	0.10
			-s	+r	+w	0.90
					-W	0.10
				-r	+w	0.01
					-w	0.99

 Gibbs sampling uses knowledge of evidence to sample all variables • Each sample takes longer to P(R|C)generate

When is Likelihood Weighting Difficult?

- Samples have higher quality (no more small weights)
- Don't forget to

 $P(C = +c|+r) \approx 0.5$

- Gibbs sampling has some issues when many of the nonevidence variables are heavily correlated (e.g. affected heavily by other non-evidence variables, therefore takes many iterations for values to settle to true distribution given evidence)
 - o e.g. Senators voting
- solution to Gibbs sampling issues: block sampling (resample blocks of variables at a time)
- o Gibbs sampling is a special case of family of general methods for empirical iterative sampling from a

distribution called **Markov chain Monte Carlo (MCMC) methods** [Metropolis Hastings is one of more popular ones, hey EECS126! and Gibbs is actual a flavor of MH]

• BN give you a general purpose way for incorporating evidence into inference procedures to infer probability of certain outcomes given evidence