
Sampling is a way to do approximate inference (without incurring the [potentially] exponential cost of VE and IBE)
•
like repeated simulation of samples from BN - getting a sample is faster than computing probabilities
◦

draw N samples from a sampling distribution S
‣
compute an approximate posterior probability (empirical probability) 
‣
you should be able to show that this converges to the true probability P(Q | E) that you would get using ‣
a technique like VE or IBE (enumeration) as your number of samples -> infinity (by LLN)


can also use sampling to learn a distribution you don't ◦
know (more on this in a later note on ML)


Sampling from a given distribution
•
Generate a random number in [0, 1) = sample u
◦
Convert sample u into an outcome for the given ◦
distribution


associate each outcome with an interval in [0, 1)
‣
e.g. P(red) = 0.6, P(blue) = 0.3, P(green) = 0.1
‣

[0, 0.6) = red, [0.6, 0.9) = blue, [0.9, 1) = green
•
After you sample a couple times you can calculate ◦
empirical probabilities 

a sample is an outcome/assignment to all variables
◦

In complex BN we can sample by using the full joint distr., but •
we don't want to construct the full joint (the whole point of this)


4 sampling methods will be covered: 1) Prior sampling, 2) ◦
Rejection sampling, 3) Likelihood weighting, 4) Gibbs 
sampling (bold is what's used in practice most often)


Prior sampling (aka ancestral sampling/forward sampling)
•
topologically order your BN 
◦
we sample in topological order
◦

first we sample from the root variable's CPT (doesn't ‣
depend on anything)

we get an outcome, proceed to the next variable X
‣

all X's parents are guaranteed to have been •
resolved to some outcome already

we sample from the part of the CPT consistent with it's parent's outcomes
•

do this until we get an outcome for each variable: 
‣
together all outcomes for all variables = one sample of our jt distr. 
‣

Code:
◦
for i = 1...n:
‣

sample x_i from P(x_i | parents(x_i))
•
return sample = (x_1, ..., x_n)
‣

Proof that this samples according to the joint distr.
◦
Let S_PS be the distribution from which we sample
‣
S_PS (x_1, ..., x_n) = Product of P(x_i | ‣
Parents(x_i)) = P(x_1, ..., x_n)

trivially true by our procedure (probability of each ‣
sample is product of getting each ancestor 
sample along the way)

Let N_PS(x_1, ..., x_n) be the number of samples ‣
with outcome (x_1, ..., x_n)


then lim N->infty empirical P(x_1, ..., x_n) = •
lim N_PS(x_1, ..., x_n) / N = S_PS(x_1, ..., 
x_n) = P(x_1, ..., x_n)


With these samples we can calculate any probabilities ◦
we want from the BN


but this depends on the specific outcome we want even happening at all in any of our samples
‣
for unlikely outcomes Prior Sampling requires a large amount of samples before we can answer (e.g. ‣
P(C | -r, -w))

tradeoff between Speed vs. Accuracy (small samples to get a quick answer, large samples to get a ‣
more accurate answer)


Rejection sampling - improvement on PS
•
prior sampling doesn't take into account what our actual query is (i.e. what samples are we actually ◦



interested in?); thus, we can make prior sampling more efficient

Main idea
◦

as soon as we get a partial sample that matches our ‣
query we stop sampling any of the other variable 
outcomes (don't need them)

we also stop & throw out samples as soon as we get ‣
outcomes inconsistent with the evidence of our query


Proof: same as prior sampling
◦
Likelihood weighting - improvement on RS
•

Problems with rejection sampling:
◦
evidence is not exploited
‣
we're still generating random samples, and if ‣
evidence is really unlikely to occur, we're going 
to reject most of our samples --> RS becomes 
very inefficient if evidence is unlikely to occur


instead we should force ALL samples to agree with ◦
evidence, and sample the rest of the variables 
(enter Likelihood weighting); but we need to be 
careful to adjust the probability by the likelihood of 
the evidence occurring P(evidence | 
parents(evidence)), i.e. the "weight"


so each sample in this case is not worth 1 as ‣
with PS and RS; instead its worth its weight


e.g. the diagonal lines indicate +evidence variables ◦
(S = +s, W = + w)


we proceed as with PS in topological order
‣
get +c, go to S, don't sample, instead weight ‣
by P(+s | + c) = 0.1 (since this is an evidence 
var.)

proceed to R, sample according to P(R | +c), get the sample +r
‣
proceed to W, don't sample, instead weight by P(+w | +c, +r) = 0.99 (since W = +w is also an evidence ‣
var.)


Code:
◦

























Proof that this matches full jt distr.
◦
sampling the variables z, with fixed evidence variables e
‣
Let S_WS(z, e) = Product of P(z_i | parents(z_i))
‣

product of sampling non-evidence variables 
•
Let w(z, e) = Product of P(e_i, | parents(e_i))
‣

product of sampling evidence variables
•
Together, the weighted sampling distribution is consistent with the full joint:
‣

S_WS(z, e) * w(z, e) = Product of P(z_i | parents(z_i)) * Product of P(e_i, | parents(e_i)) = P(z_1, ..., •
z_m, e_1, ..., e_n)


Now all of our samples are going to reflect the evidence
◦
however, if our evidence is really unlikely, our weights are going to be small; and a sample with weight 1 ‣
is as good as 10 samples with weight 0.1, so we need to generate more samples for smaller weight 
samples (which will happen if our evidence is really unlikely) = inefficient 

evidence variables influence choice of downstream variables, but not upstream ones (+s does not affect ‣



outcome of C in example above) 

hence we could have a lot of small •
weight samples; unlikely outcomes 
for evidence given likely upstream 
variables will still be unlikely and we 
will need to generate A LOT of 
samples before we can get an 
accurate distribution for the query

sum of weight = how many •
"effective" samples were obtained; 
high weight = good

we would like to consider evidence •
when we sample every variable, enter Gibbs sampling


Gibbs sampling - when evidence occurs downstream, this is more efficient (converges to true distr. faster) •
Procedure:
◦

start with a random full assignment to all variables x_1, ..., x_n (fixing evidence to be consistent)
‣
sample 1 variable at a time, conditioned on all other variables (don't sample evidence variables)
‣
repeat for many many iterations in order to "forget" initial random assignment that didn't match our distr
‣






























in the limit the resulting sample will come from the correct joint distribution
•
rationale: now both upstream and downstream variables condition on evidence 
•

[Resampling of one variable] procedure
◦
join on the variable X, renormalize with respect to X (divide by sum of join over X) since we want the ‣
distribution P(X | x_i's) the total 
probability space is over all values 
of X


notice that all other variables •
are fixed, thus the size of the 
join is just |X|!


the resulting factor depends only ‣
on X's parents, its children + 
children's parents [show up in the 
CPTs] (the Markov blanket of X)


Gibbs sampling has some issues when many of the non-•
evidence variables are heavily correlated (e.g. affected 
heavily by other non-evidence variables, therefore takes 
many iterations for values to settle to true distribution given 
evidence)


e.g. Senators voting
◦
solution to Gibbs sampling issues: block sampling (resample blocks of variables at a time)
‣

Gibbs sampling is a special case of family of general methods for empirical iterative sampling from a ◦



distribution called Markov chain Monte Carlo (MCMC) methods [Metropolis Hastings is one of more 
popular ones, hey EECS126! and Gibbs is actual a flavor of MH]


BN give you a general purpose way for incorporating evidence into inference procedures to infer probability of •
certain outcomes given evidence








