+ Sampling is a way to do approximate inference (without incurring the [potentially] exponential cost of VE and IBE)

o like repeated simulation of samples from BN - getting a sample is faster than computing probabilities
» draw N samples from a sampling distribution S
» compute an approximate posterior probability (empirical probability)
» you should be able to show that this converges to the true probability P(Q | E) that you would get using

a technique like VE or IBE (enumeration) as your number of samples -> infinity (by LLN)
o can also use sampling to learn a distribution you don't
know (more on this in a later note on ML) Inference via Sampling

« Sampling from a given distribution
o Generate a random number in [0, 1) = sample u
. . = Step 1: Generate samples
o Convert sample u into an outcome for the given +Each sample is an outcome (assignment to all

distribution e s o
» associate each outcome with an interval in [0, 1) B
> e.g. P(red) = 0.6, P(blue) = 0.3, P(green) = 0.1 , =)
= Step 3: Count the number of times each value

* [0, 0.6) = red, [0.6, 0.9) = blue, [0.9, 1) = green of the query variable occurs

o After you sample a couple times you can calculate
empirical probabilities

o a sample is an outcome/assignment to all variables

= Always the same recipe P(C‘ + u))?

+ In complex BN we can sample by using the full joint distr., but Prior Sampling
we don't want to construct the full joint (the whole point of this) P(C)
o 4 sampling methods will be covered: 1) Prior sampling, 2)
Rejection sampling, 3) Likelihood weighting, 4) Gibbs P(SIC) P(RIC)
sampling (bold is what's used in practice most often) e N [ los
+ Prior sampling (aka ancestral sampling/forward sampling) —TaTos oz
o topologically order your BN L e
o we sample in topological order PWIS, R) -
> first we sample from the root variable's CPT (doesn't c T Paten R
depend on anything) " Paten s
> we get an outcome, proceed to the next variable X | e
- all X's parents are guaranteed to have been " P Toss

resolved to some outcome already
+ we sample from the part of the CPT consistent with it's parent's outcomes
> do this until we get an outcome for each variable:
> together all outcomes for all variables = one sample of our jt distr.
o Code:
» fori=1..n:
« sample x_i from P(x_i | parents(x_i))
> return sample = (x_1, ..., x_n)
o Proof that this samples according to the joint distr.
» Let S_PS be the distribution from which we sample
» S_PS (x_1, ..., x_n) = Product of P(x_i |
Parents(x_i)) = P(x_1, ..., x_n) sy
> trivially true by our procedure (probability of each 15,45, 47, +w e.o
sample is product of getting each ancestor fc' z: ;VV: W)
sample along the way) o (

= We’ Il get a bunch of samples from the BN:

-, -5, T, +W
» Let N_PS(x_1, ..., x_n) be the number of samples = If we want to know P(W)
with outcome (X 1’ ey X n) * We have counts <+w:4, -w:1>
. . __. o _ = Normalize to get P(W) = <+w:0.8, -w:0.2>
t.hen lim N >Infty emplrlcal P(X—1’ "t X—n) - = This will get closer to the true distribution with more samples
||m N_PS(X_1 y uny X_n) / N = S_PS(X_1, cney = Can estimate anything else, too
X n) - P(X 1, s X n) = What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?

* Fast: can use fewer samples if less time (what’s the drawback?)

o With these samples we can calculate any probabilities
we want from the BN
> but this depends on the specific outcome we want even happening at all in any of our samples
> for unlikely outcomes Prior Sampling requires a large amount of samples before we can answer (e.g.
P(C | -r, -w))
> tradeoff between Speed vs. Accuracy (small samples to get a quick answer, large samples to get a
more accurate answer)
+ Rejection sampling - improvement on PS
o prior sampling doesn't take into account what our actual query is (i.e. what samples are we actually



interested in?); thus, we can make prior sampling more efficient Rejection Sampling
o Main idea
> as soon as we get a partial sample that matches our
query we stop sampling any of the other variable

= Let’s say we want P(C)
= No point keeping all samples around

outcomes (donlt need them) = Just tally counts of C as we go
> we also stop & throw out samples as soon as we get
outcomes inconsistent with the evidence of our query * Let’s say we want P(C| +5) 9.0
© Proof: same as prior sampling e
+ Likelihood weighting - improvement on RS have S=+s R
o Problems with rejection sampling: P calledTelectionsampling 4G, 45,41, 4w
- evidence is not exploited " Drobabilie L6, corect i he i) <
» we're still generating random samples, and if e
evidence is really unlikely to occur, we're going 3 : . .
to reject most of our samples --> RS becomes Likelihood Welghtmg
very inefficient if evidence is unlikely to occur P(C)
o instead we should force ALL samples to agree with [ Tos]
evidence, and sample the rest of the variables
(enter Likelihood weighting); but we need to be P(S|C) P(R|C)
careful to adjust the probability by the likelihood of e[+ Joa = Ll
the evidence occurring P(evidence | —1=123 —
parents(evidence)), i.e. the "weight" s 05 -+ [08
> so each sample in this case is not worth 1 as P(W|S, R)
with PS and RS; instead its worth its weight o o samples:
o e.g. the diagonal lines indicate +evidence variables “w_| 001 4o, 45, 414w U
S=+s,W=+w) " CaTom
> we proceed as with PS in topological order s w090
» get +c, go to S, don't sample, instead weight ~ w001 USSR OAR0.22
by P(+s | + ¢) = 0.1 (since this is an evidence [ 0%
var.)

» proceed to R, sample according to P(R | +c), get the sample +r
» proceed to W, don't sample, instead weight by P(+w | +c, +r) = 0.99 (since W = +w is also an evidence
var.)
o Code:

IN: evidence instantiation
= w=1.0
= fori=1,2,..,n
= if X; is an evidence variable
= X, = observation x; for X;
= Setw=w *P(x | Parents(X))
= else
= Sample x, from P(X; | Parents(X,))

= return (Xq, Xy, -, X,), W
|

T 2

o Proof that this matches full jt distr.
> sampling the variables z, with fixed evidence variables e
» Let S_WS(z, €) = Product of P(z_i | parents(z_i))
» product of sampling non-evidence variables
» Let w(z, e) = Product of P(e_i, | parents(e_i))
+ product of sampling evidence variables
> Together, the weighted sampling distribution is consistent with the full joint:
+ S_WS(z, e) * w(z, e) = Product of P(z_i | parents(z_i)) * Product of P(e_i, | parents(e_i)) = P(z_1, ...,
z_m,e_1,...,e_n)
o Now all of our samples are going to reflect the evidence
> however, if our evidence is really unlikely, our weights are going to be small; and a sample with weight 1
is as good as 10 samples with weight 0.1, so we need to generate more samples for smaller weight
samples (which will happen if our evidence is really unlikely) = inefficient
> evidence variables influence choice of downstream variables, but not upstream ones (+s does not affect



outcome of C in example above) When is Likelihood Weighting Difficult?
» hence we could have a lot of small

weight samples; unlikely outcomes P(C) [
for evidence given likely upstream (1477  « Information about evidence

variables will still be unlikely and we Coom) affects downstream nodes
will need to generate A LOT of il = Information about evidence
samples before we can get an At does not affect upstream
accurate distribution for the query <« P({%\C;)E nodes

+ sum of weight = how many L o2 * When we sample Cloudy we
"effective" samples were obtained; * Frloss do not use the evidence at

alll

high weight = good
+ we would like to consider evidence
when we sample every variable, enter Gibbs sampling
+ Gibbs sampling - when evidence occurs downstream, this is more efficient (converges to true distr. faster)
o Procedure:
> start with a random full assignment to all variables x_1, ..., x_n (fixing evidence to be consistent)
» sample 1 variable at a time, conditioned on all other variables (don't sample evidence variables)
> repeat for many many iterations in order to "forget" initial random assignment that didn't match our distr

P(C =+c|+7)=007

Gibbs Sampling Example: P(S | +r)

= Step 1: Fix evidence = Step 2: Initialize other variables

= R=+ ®= Randomly
O S
O

= Steps 3: Repeat
= Choose a non-evidence variable X
= Resample X from P( X | all other variables)

G o e n

Sample from P(S|+ ¢, ~w,+r)  Sample from P(C|+ s, —w,+r) Sample from P(W|+ s,+c, +r)

+ in the limit the resulting sample will come from the correct joint distribution
+ rationale: now both upstream and downstream variables condition on evidence
o [Resampling of one variable] procedure
> join on the variable X, renormalize with respect to X (divide by sum of join over X) since we want the

distribution P(X | x_i's) the total AG | Reci
probability space is over all values eéneral Recipe

of X
+ notice that all other variables ~ * Sample from P(s | +c,+r,-w) L OTCRI ()
are fixed, thus the size of the e.@
join is just [X|! = Enough to only joinon'S

® How large is the resulting factor?

> the resulting factor depends only
on X's parents, its children +

= But it gets better...

Childrenls parents [ShOW Up in the = Only need to multiply those entries that are consistent with the assignment
CPTs] (the Markov blanket of X) P@C) P(RIO)  P(S|0) P(W|S,R)
When is Likelihood Weighting Difficult? e [EejEed) [EESEE [ 1
< [+r 02 < I +s %o.sl‘ o [_+w | 090
P(C) ’ o8 s [05 w_| 010
i PCI+1)T  « Gibbs sampling uses s | +r | +w | 090
- B W 0.10
@ knowledge of evidence to o | +w | 001
sample all variables [w [099]
= Each sample takes longer to » Gibbs sampling has some issues when many of the non-
G PRIO) - generate evidence variables are heavily correlated (e.g. affected

g Dontforgetto = Samples have higher quality heavily by other non-evidence variables, therefore takes
oss Normalize! (no more small weights) ! . s . . .
many iterations for values to settle to true distribution given
evidence)
o e.g. Senators voting
> solution to Gibbs sampling issues: block sampling (resample blocks of variables at a time)
o Gibbs sampling is a special case of family of general methods for empirical iterative sampling from a

P(C=+4c|+7r)~05



distribution called Markov chain Monte Carlo (MCMC) methods [Metropolis Hastings is one of more
popular ones, hey EECS126! and Gibbs is actual a flavor of MH]

+ BN give you a general purpose way for incorporating evidence into inference procedures to infer probability of
certain outcomes given evidence



