+ Optimizer works on operations in relational algebra Architecture of a DBMS: What we’ve learned
language which can be represented as a logical query plan

(tree shaped), basically a strategy to execute the query Completed m
o optimizer produces an optimized physical query plan e ey el o ot the
which generates an algorithm for every operator in the You are here! mp . o
. . n, N
tree to pump data through tree via operations called Completed gy | |eaandindes Managamenty mplementations
iterators (more.on all this Igter) Completed mp ——
o SQL - declarative expression of the query result (what Completed M || Disk Space Management ¢ Za,
you want) : Jowl
> the query optimizer figures out how to get it - &
o Relational algebra - operational description of a
computation; it's an ordered plan An Overview of the Layer Above
> algebra on sets
. — . SQL Query Relational Algebra
> operational description of transformations of sets m — = o ‘
. . .. R s S iery Parser s ¥~ 100" rating
» Codd's Theorem: equivalence in expressivity b/t ELCPHE, S = saions))
relational calculus (essentially a SQL-like lang that Rl S R—)
descrlbe§ result of cc_)mputatlon based on first optimsed Pyt Query P
order logic) and relational algebra Ll T ar
« connects declarative representation of queries) ‘ e o]
with operational description (ask and computer e el ey
will deliver somehow) Operator Code N g
+ can compile SQL into relational algebra o e e -

Reserves

> specify explicit order of operations, uses closed set iterator
of operators
+ Set operators
o Union (U):
> 2 input relations must be compatible, i.e. same # fields (columns), fields in corresponding positions
have same type
» SQL expression: UNION
+ UNION ALL doesn't remove duplicates in the union
o Set difference (-):
> both input relations must be compatible, returns tuples in R1 but not in R2
> SQL expression: EXCEPT
+ EXCEPT ALL does not remove duplicates of matches
o Cross-Product (x): R1 x S1
» each row of R1 paired with each row of S1
» R1 and S1 don't need to be schema compatible
o Renaming (rho):
> renames relations and their attributes
> relational algebra doesn't require names (just use positional args) but names are useful
> rho(<output relation>(<renaming list>), <input relation>)
« first arg schema change definition
o output relation is name of the new table

o rer}amlng. list is <pos -> new name> Compound Operator: Join
pairs saying: rename column at <pos>
the name <new name> » Joins are compound operators (like intersection):
o Selection (sigma) selects based on some conditions * Generally, o,(R x S)
theta (|e a WHERE clause) + Hierarchy of common kinds:
» choose desired rows + Theta Join (~,): join on logical expression ¢

« Equi-Join: theta join with theta being a conjunction of equalities
« Natural Join (=): equi-join on all matching column names

> e.g. sigma_{rating > 8}(S)

» corresponds to WHERE clause in SQL

> dup|icate elimination is not needed since the Not?: we will need to-learn a good join algorithm. (ﬁ
input is a set of tuples (no dups) and we only Avoid cross-product if we cant! ”t_.:
removed some tuples

o Projection (pi_{expression}) projects a table onto a different schema (same # rows) given by the expression
(e.g. prune # columns)

> choose desired columns

» corresponds to the select list in SQL

> e.g. pi_{name, age}(S)

> remember that all duplicate values are removed Extended Relational Algebra
o Compound operators:

> intersection (INTERSECT)

g - . Group By / Aggregation Operator (y):
+ both input relations must be compatible

* Yage AVG(ratmg;(Sa”mS)

° baSica”y 518&8&52=81- (S1 - 82) + With selection (HAVING clause):
o just the stuff that's not different * Yage, AVG(ating, COUNT(-2(S@ilOrS)
> join (JOIN)
» does a cross product between tables + Textbook uses two operators:
+ theta join: e.g. join on sid = sid + GROUP BY age, AVG(rating) (Sailors)
o e.g. join on agel < age2 + HAVING COUNT(")>2

L . . GROUP BY age, AVGirating)(Sail
+ natural join: joins on all columns with matching names (a0e (rating)(Sailors)

(join on matching values for these cols), project away
the 2 matching columns into 1 column (common for foreign key joins)
o Extended relational algebra
> group by / aggregation operator: gamma_{expression}
+ expression is a group by column list (which can include aggregation function over input columns) +
having condition
+ The algebra is closed, meaning each input/output is a relation
o everything is typed, i.e. has a set type
o uses set semantics, meaning NO DUPLICATES (i.e. no duplicate tuples) in relations
> different from SQL which uses multiset (bag) semantics

