
Optimizer works on operations in relational algebra •
language which can be represented as a logical query plan
(tree shaped), basically a strategy to execute the query

optimizer produces an optimized physical query plan ◦
which generates an algorithm for every operator in the
tree to pump data through tree via operations called
iterators (more on all this later)

SQL - declarative expression of the query result (what ◦
you want)

the query optimizer figures out how to get it
‣
Relational algebra - operational description of a ◦
computation; it's an ordered plan

algebra on sets
‣
operational description of transformations of sets
‣
Codd's Theorem: equivalence in expressivity b/t ‣
relational calculus (essentially a SQL-like lang that
describes result of computation based on first
order logic) and relational algebra

connects declarative representation of queries •
with operational description (ask and computer
will deliver somehow)

can compile SQL into relational algebra
•

specify explicit order of operations, uses closed set ‣
of operators

Set operators
•
Union (U):
◦

2 input relations must be compatible, i.e. same # fields (columns), fields in corresponding positions ‣
have same type

SQL expression: UNION
‣

UNION ALL doesn't remove duplicates in the union
•
Set difference (-):
◦

both input relations must be compatible, returns tuples in R1 but not in R2
‣
SQL expression: EXCEPT
‣

EXCEPT ALL does not remove duplicates of matches
•
 Cross-Product (x): R1 x S1
◦

each row of R1 paired with each row of S1
‣
R1 and S1 don't need to be schema compatible
‣

Renaming (rho):
◦
renames relations and their attributes
‣
relational algebra doesn't require names (just use positional args) but names are useful
‣
rho(<output relation>(<renaming list>), <input relation>)
‣

first arg schema change definition
•
output relation is name of the new table
◦
renaming list is <pos -> new name> ◦
pairs saying: rename column at <pos>
the name <new name>

Selection (sigma) selects based on some conditions ◦
theta (i.e. a WHERE clause)

choose desired rows
‣
e.g. sigma_{rating > 8}(S)
‣
corresponds to WHERE clause in SQL
‣
duplicate elimination is not needed since the ‣
input is a set of tuples (no dups) and we only
removed some tuples

Projection (pi_{expression}) projects a table onto a different schema (same # rows) given by the expression ◦
(e.g. prune # columns)

choose desired columns
‣
corresponds to the select list in SQL
‣
e.g. pi_{name, age}(S)
‣

remember that all duplicate values are removed
‣
Compound operators:
◦

intersection (INTERSECT)
‣
both input relations must be compatible
•
basically S1 && S2 = S1 - (S1 - S2)
•

just the stuff that's not different
◦
join (JOIN)
‣

does a cross product between tables
•
theta join: e.g. join on sid = sid
•

e.g. join on age1 < age2
◦
natural join: joins on all columns with matching names •
(join on matching values for these cols), project away
the 2 matching columns into 1 column (common for foreign key joins)

Extended relational algebra
◦
group by / aggregation operator: gamma_{expression}
‣

expression is a group by column list (which can include aggregation function over input columns) + •
having condition

The algebra is closed, meaning each input/output is a relation
•
everything is typed, i.e. has a set type
◦
uses set semantics, meaning NO DUPLICATES (i.e. no duplicate tuples) in relations
◦

different from SQL which uses multiset (bag) semantics ‣

