
Thread
•
single execution sequence (basic unit) working inside a protection boundary (i.e. process's address space), ◦
a separately schedulable task 

kernel inherently uses threads
◦
has register state and stack living in address space of a process
◦

local state = (its stack), shared state (static data and heap)
‣
thread state (registers: sp, ip) kept in TCB when thread is not running 
‣

protection
◦
can have 1 or many threads per protection domain (i.e. process)
‣
single threaded user program: 1 thread per process (PINTOS)
‣
multi threaded ...: multiple threads sharing same data structures, isolated from other user programs
‣
multi threaded kernel: multiple threads sharing kernel data structures, capable of privileged instructions
‣

motivation
◦
OS needs to handle multiple things at once [MTAO] (processes, interrupts, background system ‣
maintenance)

servers (multiple connections), parallel programs ‣
(better performance), UI's (to achieve responsiveness), 
network and disk bound programs (to hide latency) 
also need to handle MTAO


processor is really fast => for slow system work (e.g. disk ◦
access), we can keep the processor busy doing other tasks

thread voluntarily giving up control
◦

I/O 
‣
e.g. keyboard listens for keypress; while it waits, •
let CPU do other important work


waiting for a signal from another thread
‣
thread makes syscall to wait
•

thread executes thread_yield
‣
manually relinquishes CPU; but •
calling thread gets put on ready 
queue immediately


switching threads (nanoseconds) is MUCH ◦
CHEAPER than switching processes 
(microseconds)


no need to change address space ‣
(page table)

start a new process => isolation/protection
‣

just start a new thread => performance
•
e.g. multi-threaded server
◦

loop: accept new connection, fork a thread/process to service it
‣
if too many requests => might run out of ‣
memory (thread stacks), schedulers can't 
handle too many threads


can use thread pools: fixed/bounded •
number of worker threads, 
allocated in advance (=> no 
thread creation overhead)

have a queue of pending •
task requests => wait for a 
thread to execute on


vocabulary
◦
multiprocessing: multiple cores
‣
multiprogramming: multiple jobs ‣
per process

multithreading: multiple threads ‣
per process 


Thread vs Process State
•
process wide state
◦

address space, memory contents (global variables, heap)
‣



I/O bookkeeping 
‣
thread-local state
◦

CPU registers including program counter 
‣
execution stack
‣
TCB 
‣

shared state across all threads
◦
each thread has their own stack
‣
kernel manages TCB for each thread 
‣

thread stacks must be big enough, but small enough to fit in user memory ◦
space


how much space should we ‣
leave between stacks (so they 
don't overwrite each other)


Preempting a thread
•
if a thread never voluntarily gives up ◦
control => dispatcher/kernel gains 
control via interrupts


signals from HW or SW to stop ‣
whatever thread is running and 
jump to kernel


set timer every ms to switch threads 
◦
context switches between processes ◦
<= same idea => between threads


except don't have to change ‣
address space between intra-
process threads


Start with ThreadRoot
•
who is passed a function that grows/initializes the thread stack 
◦

User-level multithreading: pthreads (corresponds to fork for processes )
•
when thread exits, it can pass some result to a ptr that is made available to any successful join (e.g. by a ◦
calling thread)

pthread_join puts calling thread to sleep until target thread calls pthread_exit (and terminates)
◦

but the target thread's stack may not have been deallocated just yet 
‣
fork thread pattern:
◦

main thread forks collection of sub threads, passing them args to work on
‣
=> joins with them, collecting the results
‣

Correctness with concurrent threads
•
non-determinism:
◦

scheduler can run threads in any order and switch threads at any time
‣
for independent threads: there is no shared state, so this is ok
◦
with shared state between multiple threads, we can run into data inconsistencies 
◦

race condition: thread A races against thread B (outcome of data depends on order of execution)
‣
atomic operations
◦

operation that runs to completion or not at all 
‣
need some atomic modifications (R/W) to allow threads to work together
‣

mutual exclusion - ensure only one thread does a particular thing at a time on the data (1 thread excludes ◦
others)

critical section - code that ◦
exactly one thread can 
execute at once (result of 
mutual exclusion), atomic 
code

use locks to provide mutual ◦
exclusion in critical sections


lock - an object only one ‣
thread can hold at a time


a synchronization •
variable that provides 
mutual exclusion




lock associated with some shared state; •
thread needs to hold lock in order to 
access that state 

makes the shared object "thread safe"
•
operations on the shared object are a •
critical section


has 2 atomic operations: acquire (wait until ‣
lock free => grab), release (unlock, wake up 
waiters)


e.g. threadfun is a function executed by ◦
multiple threads


use pthread_mutex_t to create a mutually ‣
exclusive object

essentially used to create an atomic ‣
critical section of code


semaphores (i.e. railway gate) are a kind of ◦
generalized lock


can be any non-negative integer, can be initialized to anything >= 0
‣
has 2 atomic operations:
‣

P() or down(): waits for semaphore to go positive => decrements it by 1
•
V() or up(): increments semaphore by 1 => wakes up any waiting P
•

e.g. implemented as a lock
‣
 if semaphore is initialized to 1 => down locks it => up releases the lock (see right image)
•

e.g. can be used to thread_join
‣
the semaphore can't go negative => down (in ThreadJoin) must wait until semaphore is •
incremented to 1 by the up call in ThreadFinish

this type of semaphore is called a condition variable
•

intuition for semaphores: what do you need to wait for? and what variable can you set to 0 when you ‣
need to wait?


Implementing locks
•
single core
◦

disable interrupts while holding ‣
lock to ensure atomic operation 
(guarantee no interference in the 
middle of critical section)

naive:
‣

x86 has instructions cli and •
sti to enable/disable 
interrupts

acquire: by disabling •
interrupts, release: by re-
enabling interrupts

terrible idea, because if we •
acquire and then the thread 
has an infinite loop => no way for system to exit because no interrupts allowed!


=> can't do any I/O either!
◦
we only want to disable interrupts over a tiny window (to ensure atomic access to the lock itself)
‣

critical section is only the block in between the disable and enable of interrupts (very short)
•
value indicates the lock's status
•
this lock signals whether a thread has permission to access a data structure
•

acquire and release are themselves basic atomic operations
‣
disable interrupts => accessing the lock state doesn't itself run into synchronization issues
•

then for a thread's critical section (atomically executed code), acquire --> do atomic stuff --> release
‣
for atomic actions, surround with lock acquire and release 
•

a lock is a value (FREE or BUSY) + list of threads (waiting on that value)
‣
if lock busy => an acquiring thread is put on the lock's waiting queue
‣

it suspends itself => allows switch to another runnable thread (by enabling kernel interrupts)
•
when some thread releases this lock => the acquiring thread is put back on the scheduler's ready •
queue (removed from the lock's wait queue)




note that we re-enable interrupts after a context switch (re-enabled by the next thread to run)
‣
if lock is busy => at least 1 thread on wait queue 
‣

first thread on wait Q is the current thread with the lock?
•
synchronization variables - data structure used to coordinate concurrent access to shared state
•

e.g. locks and condition variables 
◦
both can be implemented with semaphores
◦

built with atomic read-modify-write instructions
‣
shared objects use synchronization variables to coordinate multiple threads' access to shared state
•

shared objects should be allocated on the heap (not in a function's local stack which can disappear after the ◦
returns)




Threads hold illusion of infinite number of processors (each thread can get its own processor)
•
Current PCB
•

pid, name, etc
◦
TCBs (thread objects)
◦

place to save registers when not running
‣
thread status
‣
links to form lists
‣

Thread stack
◦
Lock object (per thread)
◦

for any lock used by its kernel thread
‣
current working directory
◦
file descriptors/handles for open files 
◦

















